Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 51
Filtrar
1.
NPJ Vaccines ; 9(1): 10, 2024 Jan 06.
Artigo em Inglês | MEDLINE | ID: mdl-38184681

RESUMO

The receptor-binding domain, region II, of the Plasmodium vivax Duffy binding protein (PvDBPII) binds the Duffy antigen on the reticulocyte surface to mediate invasion. A heterologous vaccine challenge trial recently showed that a delayed dosing regimen with recombinant PvDBPII SalI variant formulated with adjuvant Matrix-MTM reduced the in vivo parasite multiplication rate (PMR) in immunized volunteers challenged with the Thai P. vivax isolate PvW1. Here, we describe extensive analysis of the polyfunctional antibody responses elicited by PvDBPII immunization and identify immune correlates for PMR reduction. A classification algorithm identified antibody features that significantly contribute to PMR reduction. These included antibody titre, receptor-binding inhibitory titre, dissociation constant of the PvDBPII-antibody interaction, complement C1q and Fc gamma receptor binding and specific IgG subclasses. These data suggest that multiple immune mechanisms elicited by PvDBPII immunization are likely to be associated with protection and the immune correlates identified could guide the development of an effective vaccine for P. vivax malaria. Importantly, all the polyfunctional antibody features that correlated with protection cross-reacted with both PvDBPII SalI and PvW1 variants, suggesting that immunization with PvDBPII should protect against diverse P. vivax isolates.

2.
Epidemiol Infect ; 152: e37, 2024 Jan 22.
Artigo em Inglês | MEDLINE | ID: mdl-38250791

RESUMO

To investigate the symptoms of SARS-CoV-2 infection, their dynamics and their discriminatory power for the disease using longitudinally, prospectively collected information reported at the time of their occurrence. We have analysed data from a large phase 3 clinical UK COVID-19 vaccine trial. The alpha variant was the predominant strain. Participants were assessed for SARS-CoV-2 infection via nasal/throat PCR at recruitment, vaccination appointments, and when symptomatic. Statistical techniques were implemented to infer estimates representative of the UK population, accounting for multiple symptomatic episodes associated with one individual. An optimal diagnostic model for SARS-CoV-2 infection was derived. The 4-month prevalence of SARS-CoV-2 was 2.1%; increasing to 19.4% (16.0%-22.7%) in participants reporting loss of appetite and 31.9% (27.1%-36.8%) in those with anosmia/ageusia. The model identified anosmia and/or ageusia, fever, congestion, and cough to be significantly associated with SARS-CoV-2 infection. Symptoms' dynamics were vastly different in the two groups; after a slow start peaking later and lasting longer in PCR+ participants, whilst exhibiting a consistent decline in PCR- participants, with, on average, fewer than 3 days of symptoms reported. Anosmia/ageusia peaked late in confirmed SARS-CoV-2 infection (day 12), indicating a low discrimination power for early disease diagnosis.


Assuntos
Ageusia , COVID-19 , Humanos , Anosmia/epidemiologia , Anosmia/etiologia , COVID-19/diagnóstico , Teste para COVID-19 , Vacinas contra COVID-19 , Estudos Longitudinais , SARS-CoV-2 , Ensaios Clínicos Fase III como Assunto
3.
J Clin Invest ; 133(20)2023 10 16.
Artigo em Inglês | MEDLINE | ID: mdl-37616070

RESUMO

BACKGROUNDThe biology of Plasmodium vivax is markedly different from that of P. falciparum; how this shapes the immune response to infection remains unclear. To address this shortfall, we inoculated human volunteers with a clonal field isolate of P. vivax and tracked their response through infection and convalescence.METHODSParticipants were injected intravenously with blood-stage parasites and infection dynamics were tracked in real time by quantitative PCR. Whole blood samples were used for high dimensional protein analysis, RNA sequencing, and cytometry by time of flight, and temporal changes in the host response to P. vivax were quantified by linear regression. Comparative analyses with P. falciparum were then undertaken using analogous data sets derived from prior controlled human malaria infection studies.RESULTSP. vivax rapidly induced a type I inflammatory response that coincided with hallmark features of clinical malaria. This acute-phase response shared remarkable overlap with that induced by P. falciparum but was significantly elevated (at RNA and protein levels), leading to an increased incidence of pyrexia. In contrast, T cell activation and terminal differentiation were significantly increased in volunteers infected with P. falciparum. Heterogeneous CD4+ T cells were found to dominate this adaptive response and phenotypic analysis revealed unexpected features normally associated with cytotoxicity and autoinflammatory disease.CONCLUSIONP. vivax triggers increased systemic interferon signaling (cf P. falciparum), which likely explains its reduced pyrogenic threshold. In contrast, P. falciparum drives T cell activation far in excess of P. vivax, which may partially explain why falciparum malaria more frequently causes severe disease.TRIAL REGISTRATIONClinicalTrials.gov NCT03797989.FUNDINGThe European Union's Horizon 2020 Research and Innovation programme, the Wellcome Trust, and the Royal Society.


Assuntos
Malária Falciparum , Malária Vivax , Malária , Humanos , Plasmodium vivax , Plasmodium falciparum , Ativação Linfocitária
4.
Med ; 4(10): 668-686.e7, 2023 Oct 13.
Artigo em Inglês | MEDLINE | ID: mdl-37572659

RESUMO

BACKGROUND: RH5 is a leading blood-stage candidate antigen for a Plasmodium falciparum vaccine; however, its safety and immunogenicity in malaria-endemic populations are unknown. METHODS: A phase 1b, single-center, dose-escalation, age-de-escalation, double-blind, randomized, controlled trial was conducted in Bagamoyo, Tanzania (NCT03435874). Between 12th April and 25th October 2018, 63 healthy adults (18-35 years), young children (1-6 years), and infants (6-11 months) received a priming dose of viral-vectored ChAd63 RH5 or rabies control vaccine. Sixty participants were boosted with modified vaccinia virus Ankara (MVA) RH5 or rabies control vaccine 8 weeks later and completed 6 months of follow-up post priming. Primary outcomes were the number of solicited and unsolicited adverse events post vaccination and the number of serious adverse events over the study period. Secondary outcomes included measures of the anti-RH5 immune response. FINDINGS: Vaccinations were well tolerated, with profiles comparable across groups. No serious adverse events were reported. Vaccination induced RH5-specific cellular and humoral responses. Higher anti-RH5 serum immunoglobulin G (IgG) responses were observed post boost in young children and infants compared to adults. Vaccine-induced antibodies showed growth inhibition activity (GIA) in vitro against P. falciparum blood-stage parasites; their highest levels were observed in infants. CONCLUSIONS: The ChAd63-MVA RH5 vaccine shows acceptable safety and reactogenicity and encouraging immunogenicity in children and infants residing in a malaria-endemic area. The levels of functional GIA observed in RH5-vaccinated infants are the highest reported to date following human vaccination. These data support onward clinical development of RH5-based blood-stage vaccines to protect against clinical malaria in young African infants. FUNDING: Medical Research Council, London, UK.


Assuntos
Vacinas Antimaláricas , Malária Falciparum , Adulto , Criança , Pré-Escolar , Humanos , Lactente , Adenovirus dos Símios , Anticorpos Antivirais , Vacinas Antimaláricas/efeitos adversos , Vacinas Antimaláricas/imunologia , Malária Falciparum/prevenção & controle , Raiva , Tanzânia , Adolescente , Adulto Jovem , Método Duplo-Cego
5.
Sci Transl Med ; 15(704): eadf1782, 2023 07 12.
Artigo em Inglês | MEDLINE | ID: mdl-37437014

RESUMO

There are no licensed vaccines against Plasmodium vivax. We conducted two phase 1/2a clinical trials to assess two vaccines targeting P. vivax Duffy-binding protein region II (PvDBPII). Recombinant viral vaccines using chimpanzee adenovirus 63 (ChAd63) and modified vaccinia virus Ankara (MVA) vectors as well as a protein and adjuvant formulation (PvDBPII/Matrix-M) were tested in both a standard and a delayed dosing regimen. Volunteers underwent controlled human malaria infection (CHMI) after their last vaccination, alongside unvaccinated controls. Efficacy was assessed by comparisons of parasite multiplication rates in the blood. PvDBPII/Matrix-M, given in a delayed dosing regimen, elicited the highest antibody responses and reduced the mean parasite multiplication rate after CHMI by 51% (n = 6) compared with unvaccinated controls (n = 13), whereas no other vaccine or regimen affected parasite growth. Both viral-vectored and protein vaccines were well tolerated and elicited expected, short-lived adverse events. Together, these results support further clinical evaluation of the PvDBPII/Matrix-M P. vivax vaccine.


Assuntos
Malária , Parasitos , Humanos , Animais , Plasmodium vivax , Vacinação
6.
J Infect ; 87(3): 230-241, 2023 09.
Artigo em Inglês | MEDLINE | ID: mdl-37331429

RESUMO

BACKGROUND: This was the first study to investigate the reactogenicity and immunogenicity of heterologous or fractional second dose COVID-19 vaccine regimens in adolescents. METHODS: A phase II, single-blind, multi-centre, randomised-controlled trial recruited across seven UK sites from September to November 2021, with follow-up visits to August 2022. Healthy 12-to-16 years olds were randomised (1:1:1) to either 30 µg BNT162b2 (BNT-30), 10 µg BNT162b2 (BNT-10), or NVX-CoV2373 (NVX), 8 weeks after a first 30 µg dose of BNT162b2. The primary outcome was solicited systemic reactions in the week following vaccination. Secondary outcomes included immunogenicity and safety. 'Breakthrough infection' analyses were exploratory. FINDINGS: 148 participants were recruited (median age 14 years old, 62% female, 26% anti-nucleocapsid IgG seropositive pre-second dose); 132 participants received a second dose. Reactions were mostly mild-to-moderate, with lower rates in BNT-10 recipients. No vaccine-related serious adverse events occurred. Compared to BNT-30, at 28 days post-second dose anti-spike antibody responses were similar for NVX (adjusted geometric mean ratio [aGMR]) 1.09 95% confidence interval (CI): 0.84, 1.42] and lower for BNT-10 (aGMR 0.78 [95% CI: 0.61, 0.99]). For Omicron BA.1 and BA.2, the neutralising antibody titres for BNT-30 at day 28 were similar for BNT-10 (aGMR 1.0 [95% CI: 0.65, 1.54] and 1.02 [95% CI: 0.71, 1.48], respectively), but higher for NVX (aGMR 1.7 [95% CI: 1.07, 2.69] and 1.43 [95% CI: 0.96, 2.12], respectively). Compared to BNT-30, cellular immune responses were greatest for NVX (aGMR 1.73 [95% CI: 0.94, 3.18]), and lowest for BNT-10 (aGMR 0.65 [95% CI: 0.37, 1.15]) at 14 days post-second dose. Cellular responses were similar across the study arms by day 236 post-second dose. Amongst SARS-CoV-2 infection naïve participants, NVX participants had an 89% reduction in risk of self-reported 'breakthrough infection' compared to BNT-30 (adjusted hazard ratio [aHR] 0.11 [95% CI: 0.01, 0.86]) up until day 132 after second dose. BNT-10 recipients were more likely to have a 'breakthrough infection' compared to BNT-30 (aHR 2.14 [95% CI: 1.02, 4.51]) up to day 132 and day 236 post-second dose. Antibody responses at 132 and 236 days after second dose were similar for all vaccine schedules. INTERPRETATION: Heterologous and fractional dose COVID-19 vaccine schedules in adolescents are safe, well-tolerated and immunogenic. The enhanced performance of the heterologous schedule using NVX-CoV2373 against the Omicron SARS-CoV-2 variant suggests this mRNA prime and protein-subunit boost schedule may provide a greater breadth of protection than the licensed homologous schedule. FUNDING: National Institute for Health Research and Vaccine Task Force. TRIAL REGISTRATION: International Standard Randomised Controlled Trial Number registry: 12348322.


Assuntos
Vacinas contra COVID-19 , COVID-19 , Humanos , Adolescente , Feminino , Masculino , Vacinas contra COVID-19/efeitos adversos , Vacina BNT162 , Infecções Irruptivas , COVID-19/prevenção & controle , SARS-CoV-2 , Método Simples-Cego , Vacinação , Imunogenicidade da Vacina , Anticorpos Antivirais , Anticorpos Neutralizantes
7.
Malar J ; 22(1): 159, 2023 May 19.
Artigo em Inglês | MEDLINE | ID: mdl-37208733

RESUMO

BACKGROUND: For blood-stage malaria vaccine development, the in vitro growth inhibition assay (GIA) has been widely used to evaluate functionality of vaccine-induced antibodies (Ab), and Plasmodium falciparum reticulocyte-binding protein homolog 5 (RH5) is a leading blood-stage antigen. However, precision, also called "error of assay (EoA)", in GIA readouts and the source of EoA has not been evaluated systematically. METHODS: In the Main GIA experiment, 4 different cultures of P. falciparum 3D7 parasites were prepared with red blood cells (RBC) collected from 4 different donors. For each culture, 7 different anti-RH5 Ab (either monoclonal or polyclonal Ab) were tested by GIA at two concentrations on three different days (168 data points). To evaluate sources of EoA in % inhibition in GIA (%GIA), a linear model fit was conducted including donor (source of RBC) and day of GIA as independent variables. In addition, 180 human anti-RH5 polyclonal Ab were tested in a Clinical GIA experiment, where each Ab was tested at multiple concentrations in at least 3 independent GIAs using different RBCs (5,093 data points). The standard deviation (sd) in %GIA and in GIA50 (Ab concentration that gave 50%GIA) readouts, and impact of repeat assays on 95% confidence interval (95%CI) of these readouts was estimated. RESULTS: The Main GIA experiment revealed that the RBC donor effect was much larger than the day effect, and an obvious donor effect was also observed in the Clinical GIA experiment. Both %GIA and log-transformed GIA50 data reasonably fit a constant sd model, and sd of %GIA and log-transformed GIA50 measurements were calculated as 7.54 and 0.206, respectively. Taking the average of three repeat assays (using three different RBCs) reduces the 95%CI width in %GIA or in GIA50 measurements by ~ half compared to a single assay. CONCLUSIONS: The RBC donor effect (donor-to-donor variance on the same day) in GIA was much bigger than the day effect (day-to-day variance using the same donor's RBC) at least for the RH5 Ab evaluated in this study; thus, future GIA studies should consider the donor effect. In addition, the 95%CI for %GIA and GIA50 shown here help when comparing GIA results from different samples/groups/studies; therefore, this study supports future malaria blood-stage vaccine development.


Assuntos
Vacinas Antimaláricas , Malária Falciparum , Humanos , Plasmodium falciparum , Anticorpos Antiprotozoários , Malária Falciparum/parasitologia , Eritrócitos/parasitologia , Anticorpos Antivirais , Antígenos de Protozoários
8.
J Infect ; 87(1): 18-26, 2023 07.
Artigo em Inglês | MEDLINE | ID: mdl-37085049

RESUMO

BACKGROUND: COV-BOOST is a multicentre, randomised, controlled, phase 2 trial of seven COVID-19 vaccines used as a third booster dose in June 2021. Monovalent messenger RNA (mRNA) COVID-19 vaccines were subsequently widely used for the third and fourth-dose vaccination campaigns in high-income countries. Real-world vaccine effectiveness against symptomatic infections following third doses declined during the Omicron wave. This report compares the immunogenicity and kinetics of responses to third doses of vaccines from day (D) 28 to D242 following third doses in seven study arms. METHODS: The trial initially included ten experimental vaccine arms (seven full-dose, three half-dose) delivered at three groups of six sites. Participants in each site group were randomised to three or four experimental vaccines, or MenACWY control. The trial was stratified such that half of participants had previously received two primary doses of ChAdOx1 nCov-19 (Oxford-AstraZeneca; hereafter referred to as ChAd) and half had received two doses of BNT162b2 (Pfizer-BioNtech, hereafter referred to as BNT). The D242 follow-up was done in seven arms (five full-dose, two half-dose). The BNT vaccine was used as the reference as it was the most commonly deployed third-dose vaccine in clinical practice in high-income countries. The primary analysis was conducted using all randomised and baseline seronegative participants who were SARS-CoV-2 naïve during the study and who had not received a further COVID-19 vaccine for any reason since third dose randomisation. RESULTS: Among the 817 participants included in this report, the median age was 72 years (IQR: 55-78) with 50.7% being female. The decay rates of anti-spike IgG between vaccines are different among both populations who received initial doses of ChAd/ChAd and BNT/BNT. In the population that previously received ChAd/ChAd, mRNA vaccines had the highest titre at D242 following their vaccine dose although Ad26. COV2. S (Janssen; hereafter referred to as Ad26) showed slower decay. For people who received BNT/BNT as their initial doses, a slower decay was also seen in the Ad26 and ChAd arms. The anti-spike IgG became significantly higher in the Ad26 arm compared to the BNT arm as early as 3 months following vaccination. Similar decay rates were seen between BNT and half-BNT; the geometric mean ratios ranged from 0.76 to 0.94 at different time points. The difference in decay rates between vaccines was similar for wild-type live virus-neutralising antibodies and that seen for anti-spike IgG. For cellular responses, the persistence was similar between study arms. CONCLUSIONS: Heterologous third doses with viral vector vaccines following two doses of mRNA achieve more durable humoral responses compared with three doses of mRNA vaccines. Lower doses of mRNA vaccines could be considered for future booster campaigns.


Assuntos
COVID-19 , Vacinas Virais , Feminino , Humanos , Idoso , Masculino , Vacinas contra COVID-19 , Vacina BNT162 , ChAdOx1 nCoV-19 , COVID-19/prevenção & controle , SARS-CoV-2 , Imunidade , Reino Unido , Imunoglobulina G , Anticorpos Antivirais , Vacinação , Imunogenicidade da Vacina
10.
JCI Insight ; 8(2)2023 Jan 24.
Artigo em Inglês | MEDLINE | ID: mdl-36692019

RESUMO

Modifications to vaccine delivery that increase serum antibody longevity are of great interest for maximizing efficacy. We have previously shown that a delayed fractional (DFx) dosing schedule (0-1-6 month) - using AS01B-adjuvanted RH5.1 malaria antigen - substantially improves serum IgG durability as compared with monthly dosing (0-1-2 month; NCT02927145). However, the underlying mechanism and whether there are wider immunological changes with DFx dosing were unclear. Here, PfRH5-specific Ig and B cell responses were analyzed in depth through standardized ELISAs, flow cytometry, systems serology, and single-cell RNA-Seq (scRNA-Seq). Data indicate that DFx dosing increases the magnitude and durability of circulating PfRH5-specific B cells and serum IgG1. At the peak antibody magnitude, DFx dosing was distinguished by a systems serology feature set comprising increased FcRn binding, IgG avidity, and proportion of G2B and G2S2F IgG Fc glycans, alongside decreased IgG3, antibody-dependent complement deposition, and proportion of G1S1F IgG Fc glycan. Concomitantly, scRNA-Seq data show a higher CDR3 percentage of mutation from germline and decreased plasma cell gene expression in circulating PfRH5-specific B cells. Our data, therefore, reveal a profound impact of DFx dosing on the humoral response and suggest plausible mechanisms that could enhance antibody longevity, including improved FcRn binding by serum Ig and a potential shift in the underlying cellular response from circulating short-lived plasma cells to nonperipheral long-lived plasma cells.


Assuntos
Vacinas Antimaláricas , Humanos , Antígenos de Protozoários , Linfócitos B , Linfócitos , Imunoglobulina G
11.
Clin Infect Dis ; 76(3): 398-407, 2023 02 08.
Artigo em Inglês | MEDLINE | ID: mdl-36210481

RESUMO

BACKGROUND: The recombinant protein-based vaccine, NVX-CoV2373, demonstrated 89.7% efficacy against coronavirus disease 2019 (COVID-19) in a phase 3, randomized, observer-blinded, placebo-controlled trial in the United Kingdom. The protocol was amended to include a blinded crossover. Data to the end of the placebo-controlled phase are reported. METHODS: Adults aged 18-84 years received 2 doses of NVX-CoV2373 or placebo (1:1) and were monitored for virologically confirmed mild, moderate, or severe COVID-19 (onset from 7 days after second vaccination). Participants who developed immunoglobulin G (IgG) against nucleocapsid protein but did not show symptomatic COVID-19 were considered asymptomatic. Secondary outcomes included anti-spike (S) IgG responses, wild-type virus neutralization, and T-cell responses. RESULTS: Of 15 185 participants, 13 989 remained in the per-protocol efficacy population (6989 NVX-CoV2373, 7000 placebo). At a maximum of 7.5 months (median, 4.5) postvaccination, there were 24 cases of COVID-19 among NVX-CoV2373 recipients and 134 cases among placebo recipients, a vaccine efficacy of 82.7% (95% confidence interval [CI], 73.3%-88.8%). Vaccine efficacy was 100% (95% CI, 17.9%-100.0%) against severe disease and 76.3% (95% CI, 57.4%-86.8%) against asymptomatic disease. High anti-S and neutralization responses to vaccination were evident, together with S-protein-specific induction of interferon-γ secretion in peripheral blood T cells. Incidence of serious adverse events and adverse events of special interest were similar between groups. CONCLUSIONS: A 2-dose regimen of NVX-CoV2373 conferred a high level of ongoing protection against asymptomatic, symptomatic, and severe COVID-19 through >6 months postvaccination. A gradual decrease of protection suggests that a booster may be indicated. CLINICAL TRIALS REGISTRATION: EudraCT, 2020-004123-16.


Assuntos
Vacinas contra COVID-19 , COVID-19 , Adulto , Humanos , Vacinas contra COVID-19/efeitos adversos , COVID-19/prevenção & controle , SARS-CoV-2 , Vacinas Sintéticas/efeitos adversos , Imunoglobulina G , Imunogenicidade da Vacina , Método Duplo-Cego , Anticorpos Antivirais
12.
Front Immunol ; 14: 1193079, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-38299155

RESUMO

We have previously reported primary endpoints of a clinical trial testing two vaccine platforms for the delivery of Plasmodium vivax malaria DBPRII: viral vectors (ChAd63, MVA), and protein/adjuvant (PvDBPII with 50µg Matrix-M™ adjuvant). Delayed boosting was necessitated due to trial halts during the pandemic and provides an opportunity to investigate the impact of dosing regimens. Here, using flow cytometry - including agnostic definition of B cell populations with the clustering tool CITRUS - we report enhanced induction of DBPRII-specific plasma cell and memory B cell responses in protein/adjuvant versus viral vector vaccinees. Within protein/adjuvant groups, delayed boosting further improved B cell immunogenicity compared to a monthly boosting regimen. Consistent with this, delayed boosting also drove more durable anti-DBPRII serum IgG. In an independent vaccine clinical trial with the P. falciparum malaria RH5.1 protein/adjuvant (50µg Matrix-M™) vaccine candidate, we similarly observed enhanced circulating B cell responses in vaccinees receiving a delayed final booster. Notably, a higher frequency of vaccine-specific (putatively long-lived) plasma cells was detected in the bone marrow of these delayed boosting vaccinees by ELISPOT and correlated strongly with serum IgG. Finally, following controlled human malaria infection with P. vivax parasites in the DBPRII trial, in vivo growth inhibition was observed to correlate with DBPRII-specific B cell and serum IgG responses. In contrast, the CD4+ and CD8+ T cell responses were impacted by vaccine platform but not dosing regimen and did not correlate with in vivo growth inhibition in a challenge model. Taken together, our DBPRII and RH5 data suggest an opportunity for protein/adjuvant dosing regimen optimisation in the context of rational vaccine development against pathogens where protection is antibody-mediated.


Assuntos
Malária Vivax , Vacinas , Humanos , Plasmodium falciparum , Medula Óssea , Antígenos de Protozoários , Adjuvantes Imunológicos , Malária Vivax/prevenção & controle , Imunoglobulina G
13.
Front Immunol ; 13: 984323, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36072606

RESUMO

In endemic settings it is known that natural malaria immunity is gradually acquired following repeated exposures. Here we sought to assess whether similar acquisition of blood-stage malaria immunity would occur following repeated parasite exposure by controlled human malaria infection (CHMI). We report the findings of repeat homologous blood-stage Plasmodium falciparum (3D7 clone) CHMI studies VAC063C (ClinicalTrials.gov NCT03906474) and VAC063 (ClinicalTrials.gov NCT02927145). In total, 24 healthy, unvaccinated, malaria-naïve UK adult participants underwent primary CHMI followed by drug treatment. Ten of these then underwent secondary CHMI in the same manner, and then six of these underwent a final tertiary CHMI. As with primary CHMI, malaria symptoms were common following secondary and tertiary infection, however, most resolved within a few days of treatment and there were no long term sequelae or serious adverse events related to CHMI. Despite detectable induction and boosting of anti-merozoite serum IgG antibody responses following each round of CHMI, there was no clear evidence of anti-parasite immunity (manifest as reduced parasite growth in vivo) conferred by repeated challenge with the homologous parasite in the majority of volunteers. However, three volunteers showed some variation in parasite growth dynamics in vivo following repeat CHMI that were either modest or short-lived. We also observed no major differences in clinical symptoms or laboratory markers of infection across the primary, secondary and tertiary challenges. However, there was a trend to more severe pyrexia after primary CHMI and the absence of a detectable transaminitis post-treatment following secondary and tertiary infection. We hypothesize that this could represent the initial induction of clinical immunity. Repeat homologous blood-stage CHMI is thus safe and provides a model with the potential to further the understanding of naturally acquired immunity to blood-stage infection in a highly controlled setting. Clinical Trial Registration: ClinicalTrials.gov, identifier NCT03906474, NCT02927145.


Assuntos
Malária Falciparum , Malária , Parasitos , Adulto , Animais , Humanos , Plasmodium falciparum , Reino Unido
14.
medRxiv ; 2022 May 30.
Artigo em Inglês | MEDLINE | ID: mdl-35664997

RESUMO

Background: There are no licensed vaccines against Plasmodium vivax , the most common cause of malaria outside of Africa. Methods: We conducted two Phase I/IIa clinical trials to assess the safety, immunogenicity and efficacy of two vaccines targeting region II of P. vivax Duffy-binding protein (PvDBPII). Recombinant viral vaccines (using ChAd63 and MVA vectors) were administered at 0, 2 months or in a delayed dosing regimen (0, 17, 19 months), whilst a protein/adjuvant formulation (PvDBPII/Matrix-M™) was administered monthly (0, 1, 2 months) or in a delayed dosing regimen (0, 1, 14 months). Delayed regimens were due to trial halts during the COVID-19 pandemic. Volunteers underwent heterologous controlled human malaria infection (CHMI) with blood-stage P. vivax parasites at 2-4 weeks following their last vaccination, alongside unvaccinated controls. Efficacy was assessed by comparison of parasite multiplication rate (PMR) in blood post-CHMI, modelled from parasitemia measured by quantitative polymerase-chain-reaction (qPCR). Results: Thirty-two volunteers were enrolled and vaccinated (n=16 for each vaccine). No safety concerns were identified. PvDBPII/Matrix-M™, given in the delayed dosing regimen, elicited the highest antibody responses and reduced the mean PMR following CHMI by 51% (range 36-66%; n=6) compared to unvaccinated controls (n=13). No other vaccine or regimen impacted parasite growth. In vivo growth inhibition of blood-stage P. vivax correlated with functional antibody readouts of vaccine immunogenicity. Conclusions: Vaccination of malaria-naïve adults with a delayed booster regimen of PvDBPII/ Matrix-M™ significantly reduces the growth of blood-stage P. vivax . Funded by the European Commission and Wellcome Trust; VAC069, VAC071 and VAC079 ClinicalTrials.gov numbers NCT03797989 , NCT04009096 and NCT04201431 .

15.
Lancet Infect Dis ; 22(8): 1131-1141, 2022 08.
Artigo em Inglês | MEDLINE | ID: mdl-35550261

RESUMO

BACKGROUND: Some high-income countries have deployed fourth doses of COVID-19 vaccines, but the clinical need, effectiveness, timing, and dose of a fourth dose remain uncertain. We aimed to investigate the safety, reactogenicity, and immunogenicity of fourth-dose boosters against COVID-19. METHODS: The COV-BOOST trial is a multicentre, blinded, phase 2, randomised controlled trial of seven COVID-19 vaccines given as third-dose boosters at 18 sites in the UK. This sub-study enrolled participants who had received BNT162b2 (Pfizer-BioNTech) as their third dose in COV-BOOST and randomly assigned them (1:1) to receive a fourth dose of either BNT162b2 (30 µg in 0·30 mL; full dose) or mRNA-1273 (Moderna; 50 µg in 0·25 mL; half dose) via intramuscular injection into the upper arm. The computer-generated randomisation list was created by the study statisticians with random block sizes of two or four. Participants and all study staff not delivering the vaccines were masked to treatment allocation. The coprimary outcomes were safety and reactogenicity, and immunogenicity (anti-spike protein IgG titres by ELISA and cellular immune response by ELISpot). We compared immunogenicity at 28 days after the third dose versus 14 days after the fourth dose and at day 0 versus day 14 relative to the fourth dose. Safety and reactogenicity were assessed in the per-protocol population, which comprised all participants who received a fourth-dose booster regardless of their SARS-CoV-2 serostatus. Immunogenicity was primarily analysed in a modified intention-to-treat population comprising seronegative participants who had received a fourth-dose booster and had available endpoint data. This trial is registered with ISRCTN, 73765130, and is ongoing. FINDINGS: Between Jan 11 and Jan 25, 2022, 166 participants were screened, randomly assigned, and received either full-dose BNT162b2 (n=83) or half-dose mRNA-1273 (n=83) as a fourth dose. The median age of these participants was 70·1 years (IQR 51·6-77·5) and 86 (52%) of 166 participants were female and 80 (48%) were male. The median interval between the third and fourth doses was 208·5 days (IQR 203·3-214·8). Pain was the most common local solicited adverse event and fatigue was the most common systemic solicited adverse event after BNT162b2 or mRNA-1273 booster doses. None of three serious adverse events reported after a fourth dose with BNT162b2 were related to the study vaccine. In the BNT162b2 group, geometric mean anti-spike protein IgG concentration at day 28 after the third dose was 23 325 ELISA laboratory units (ELU)/mL (95% CI 20 030-27 162), which increased to 37 460 ELU/mL (31 996-43 857) at day 14 after the fourth dose, representing a significant fold change (geometric mean 1·59, 95% CI 1·41-1·78). There was a significant increase in geometric mean anti-spike protein IgG concentration from 28 days after the third dose (25 317 ELU/mL, 95% CI 20 996-30 528) to 14 days after a fourth dose of mRNA-1273 (54 936 ELU/mL, 46 826-64 452), with a geometric mean fold change of 2·19 (1·90-2·52). The fold changes in anti-spike protein IgG titres from before (day 0) to after (day 14) the fourth dose were 12·19 (95% CI 10·37-14·32) and 15·90 (12·92-19·58) in the BNT162b2 and mRNA-1273 groups, respectively. T-cell responses were also boosted after the fourth dose (eg, the fold changes for the wild-type variant from before to after the fourth dose were 7·32 [95% CI 3·24-16·54] in the BNT162b2 group and 6·22 [3·90-9·92] in the mRNA-1273 group). INTERPRETATION: Fourth-dose COVID-19 mRNA booster vaccines are well tolerated and boost cellular and humoral immunity. Peak responses after the fourth dose were similar to, and possibly better than, peak responses after the third dose. FUNDING: UK Vaccine Task Force and National Institute for Health Research.


Assuntos
Vacinas contra COVID-19 , COVID-19 , Vacina de mRNA-1273 contra 2019-nCoV , Idoso , Anticorpos Antivirais , Vacina BNT162 , COVID-19/prevenção & controle , Vacinas contra COVID-19/efeitos adversos , ChAdOx1 nCoV-19 , Feminino , Humanos , Imunogenicidade da Vacina , Imunoglobulina G , Masculino , Pessoa de Meia-Idade , SARS-CoV-2
16.
J Infect ; 84(6): 795-813, 2022 06.
Artigo em Inglês | MEDLINE | ID: mdl-35405168

RESUMO

OBJECTIVES: To evaluate the persistence of immunogenicity three months after third dose boosters. METHODS: COV-BOOST is a multicentre, randomised, controlled, phase 2 trial of seven COVID-19 vaccines used as a third booster dose. The analysis was conducted using all randomised participants who were SARS-CoV-2 naïve during the study. RESULTS: Amongst the 2883 participants randomised, there were 2422 SARS-CoV-2 naïve participants until D84 visit included in the analysis with median age of 70 (IQR: 30-94) years. In the participants who had two initial doses of ChAdOx1 nCov-19 (Oxford-AstraZeneca; hereafter referred to as ChAd), schedules using mRNA vaccines as third dose have the highest anti-spike IgG at D84 (e.g. geometric mean concentration of 8674 ELU/ml (95% CI: 7461-10,085) following ChAd/ChAd/BNT162b2 (Pfizer-BioNtech, hearafter referred to as BNT)). However, in people who had two initial doses of BNT there was no significant difference at D84 in people given ChAd versus BNT (geometric mean ratio (GMR) of 0.95 (95%CI: 0.78, 1.15). Also, people given Ad26.COV2.S (Janssen; hereafter referred to as Ad26) as a third dose had significantly higher anti-spike IgG at D84 than BNT (GMR of 1.20, 95%CI: 1.01,1.43). Responses at D84 between people who received BNT (15 µg) or BNT (30 µg) after ChAd/ChAd or BNT/BNT were similar, with anti-spike IgG GMRs of half-BNT (15 µg) versus BNT (30 µg) ranging between 0.74-0.86. The decay rate of cellular responses were similar between all the vaccine schedules and doses. CONCLUSIONS: 84 days after a third dose of COVID-19 vaccine the decay rates of humoral response were different between vaccines. Adenoviral vector vaccine anti-spike IgG concentrations at D84 following BNT/BNT initial doses were similar to or even higher than for a three dose (BNT/BNT/BNT) schedule. Half dose BNT immune responses were similar to full dose responses. While high antibody tires are desirable in situations of high transmission of new variants of concern, the maintenance of immune responses that confer long-lasting protection against severe disease or death is also of critical importance. Policymakers may also consider adenoviral vector, fractional dose of mRNA, or other non-mRNA vaccines as third doses.


Assuntos
COVID-19 , Vacinas Virais , Ad26COVS1 , Adulto , Idoso , Idoso de 80 Anos ou mais , Anticorpos Antivirais , Vacina BNT162 , COVID-19/prevenção & controle , Vacinas contra COVID-19 , ChAdOx1 nCoV-19 , Humanos , Imunogenicidade da Vacina , Imunoglobulina G , Pessoa de Meia-Idade , SARS-CoV-2 , Reino Unido , Vacinas de mRNA
17.
Front Immunol ; 13: 1006954, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36685545

RESUMO

Controlled Human Malaria Infection models (CHMI) have been critical to advancing new vaccines for malaria. Stringent and safe preparation of a challenge agent is key to the success of any CHMI. Difficulty producing the Plasmodium vivax parasite in vitro has limited production of qualified parasites for CHMI as well as the functional assays required to screen and down-select candidate vaccines for this globally distributed parasite. This and other challenges to P. vivax CHMI (PvCHMI), including scientific, logistical, and ethical obstacles, are common to P. vivax research conducted in both non-endemic and endemic countries, with additional hurdles unique to each. The challenges of using CHMI for P. vivax vaccine development and evaluation, lessons learned from previous and ongoing clinical trials, and the way forward to effectively perform PvCHMI to support vaccine development, are discussed.


Assuntos
Malária Vivax , Malária , Parasitos , Vacinas , Animais , Humanos , Plasmodium vivax , Desenvolvimento de Vacinas
18.
Lancet Respir Med ; 10(2): 167-179, 2022 02.
Artigo em Inglês | MEDLINE | ID: mdl-34800364

RESUMO

BACKGROUND: The safety and immunogenicity profile of COVID-19 vaccines when administered concomitantly with seasonal influenza vaccines have not yet been reported. We therefore aimed to report the results of a substudy within a phase 3 UK trial, by evaluating the safety, immunogenicity, and efficacy of NVX-CoV2373 when co-administered with licensed seasonal influenza vaccines. METHODS: We did a planned exploratory substudy as part of the randomised, observer-blinded, placebo-controlled, phase 3 trial of the safety and efficacy of the COVID-19 vaccine (NVX-CoV2373) by co-administrating the influenza vaccine at four study hospitals in the UK. Approximately, the first 400 participants meeting the main study entry criteria-with no contraindications to influenza vaccination-were invited to join the substudy. Participants of the main study were randomly assigned (1:1) to receive two intramuscular injections of either NVX-CoV2373 (5 µg) or placebo (normal saline) 21 days apart; participants enrolled into the substudy were co-vaccinated with a single (0·5 mL) intramuscular, age-appropriate (quadrivalent influenza cell-based vaccine [Flucelvax Quadrivalent; Seqirus UK, Maidenhead] for those aged 18-64 years and adjuvanted trivalent influenza vaccine [Fluad; Seqirus UK, Maidenhead] for those ≥65 years), licensed, influenza vaccine on the opposite deltoid to that of the first study vaccine dose or placebo. The influenza vaccine was administered in an open-label manner and at the same time as the first study injection. Reactogenicity was evaluated via an electronic diary for 7 days after vaccination in addition to monitoring for unsolicited adverse events, medically attended adverse events, and serious adverse events. Immunogenicity was assessed with influenza haemagglutination inhibition and SARS-CoV-2 anti-spike protein IgG assays. Vaccine efficacy against PCR-confirmed, symptomatic COVID-19 was assessed in participants who were seronegative at baseline, received both doses of study vaccine or placebo, had no major protocol deviations affecting the primary endpoint, and had no confirmed cases of symptomatic COVID-19 from the first dose until 6 days after the second dose (per-protocol efficacy population). Immunogenicity was assessed in participants who received scheduled two doses of study vaccine, had a baseline sample and at least one post-vaccination sample, and had no major protocol violations before unmasking (per-protocol immunogenicity population). Reactogenicity was analysed in all participants who received at least one dose of NVX-CoV2373 or placebo and had data collected for reactogenicity events. Safety was analysed in all participants who received at least one dose of NVX-CoV2373 or placebo. Comparisons were made between participants of the substudy and the main study (who were not co-vaccinated for influenza). This study is registered with ClinicalTrials.gov, number NCT04583995. FINDINGS: Between Sept 28, 2020, and Nov 28, 2020, a total of 15 187 participants were randomised into the main phase 3 trial, of whom 15 139 received treatment (7569 received dose one of NVX-CoV2373 and 7570 received dose one of placebo). 431 participants were co-vaccinated with a seasonal influenza vaccine in the substudy (217 received NVX-CoV2373 plus the influenza vaccine and 214 received placebo plus the influenza vaccine). In general, the substudy participants were younger, more racially diverse, and had fewer comorbid conditions than those in the main study. Reactogenicity events were more common in the co-administration group than in the NVX-CoV2373 alone group: tenderness (113 [64·9%] of 174 vs 592 [53·3%] of 1111) or pain (69 [39·7%] vs 325 [29·3%]) at injection site, fatigue (48 [27·7%] vs 215 [19·4%]), and muscle pain (49 [28·3%] vs 237 [21·4%]). Incidences of unsolicited adverse events, treatment-related medically attended adverse events, and serious adverse events were low and balanced between the co-administration group and the NVX-CoV2373 alone group. No episodes of anaphylaxis or deaths were reported within the substudy. Co-administration resulted in no change to influenza vaccine immune response although a reduction in antibody responses to the NVX-CoV2373 vaccine was noted. NVX-CoV2373 vaccine efficacy in the substudy (ie, participants aged 18 to <65 years) was 87·5% (95% CI -0·2 to 98·4) and in the main study was 89·8% (95% CI 79·7-95·5). INTERPRETATION: To our knowledge, this substudy is the first to show the safety, immunogenicity, and efficacy profile of a COVID-19 vaccine when co-administered with seasonal influenza vaccines. Our results suggest concomitant vaccination might be a viable immunisation strategy. FUNDING: Novavax.


Assuntos
COVID-19 , Vacinas contra Influenza , Adolescente , Adulto , Idoso , Vacinas contra COVID-19 , Método Duplo-Cego , Humanos , Imunogenicidade da Vacina , Vacinas contra Influenza/efeitos adversos , Pessoa de Meia-Idade , SARS-CoV-2 , Estações do Ano , Adulto Jovem
19.
Lancet ; 398(10318): 2258-2276, 2021 12 18.
Artigo em Inglês | MEDLINE | ID: mdl-34863358

RESUMO

BACKGROUND: Few data exist on the comparative safety and immunogenicity of different COVID-19 vaccines given as a third (booster) dose. To generate data to optimise selection of booster vaccines, we investigated the reactogenicity and immunogenicity of seven different COVID-19 vaccines as a third dose after two doses of ChAdOx1 nCov-19 (Oxford-AstraZeneca; hereafter referred to as ChAd) or BNT162b2 (Pfizer-BioNtech, hearafter referred to as BNT). METHODS: COV-BOOST is a multicentre, randomised, controlled, phase 2 trial of third dose booster vaccination against COVID-19. Participants were aged older than 30 years, and were at least 70 days post two doses of ChAd or at least 84 days post two doses of BNT primary COVID-19 immunisation course, with no history of laboratory-confirmed SARS-CoV-2 infection. 18 sites were split into three groups (A, B, and C). Within each site group (A, B, or C), participants were randomly assigned to an experimental vaccine or control. Group A received NVX-CoV2373 (Novavax; hereafter referred to as NVX), a half dose of NVX, ChAd, or quadrivalent meningococcal conjugate vaccine (MenACWY)control (1:1:1:1). Group B received BNT, VLA2001 (Valneva; hereafter referred to as VLA), a half dose of VLA, Ad26.COV2.S (Janssen; hereafter referred to as Ad26) or MenACWY (1:1:1:1:1). Group C received mRNA1273 (Moderna; hereafter referred to as m1273), CVnCov (CureVac; hereafter referred to as CVn), a half dose of BNT, or MenACWY (1:1:1:1). Participants and all investigatory staff were blinded to treatment allocation. Coprimary outcomes were safety and reactogenicity and immunogenicity of anti-spike IgG measured by ELISA. The primary analysis for immunogenicity was on a modified intention-to-treat basis; safety and reactogenicity were assessed in the intention-to-treat population. Secondary outcomes included assessment of viral neutralisation and cellular responses. This trial is registered with ISRCTN, number 73765130. FINDINGS: Between June 1 and June 30, 2021, 3498 people were screened. 2878 participants met eligibility criteria and received COVID-19 vaccine or control. The median ages of ChAd/ChAd-primed participants were 53 years (IQR 44-61) in the younger age group and 76 years (73-78) in the older age group. In the BNT/BNT-primed participants, the median ages were 51 years (41-59) in the younger age group and 78 years (75-82) in the older age group. In the ChAd/ChAD-primed group, 676 (46·7%) participants were female and 1380 (95·4%) were White, and in the BNT/BNT-primed group 770 (53·6%) participants were female and 1321 (91·9%) were White. Three vaccines showed overall increased reactogenicity: m1273 after ChAd/ChAd or BNT/BNT; and ChAd and Ad26 after BNT/BNT. For ChAd/ChAd-primed individuals, spike IgG geometric mean ratios (GMRs) between study vaccines and controls ranged from 1·8 (99% CI 1·5-2·3) in the half VLA group to 32·3 (24·8-42·0) in the m1273 group. GMRs for wild-type cellular responses compared with controls ranged from 1·1 (95% CI 0·7-1·6) for ChAd to 3·6 (2·4-5·5) for m1273. For BNT/BNT-primed individuals, spike IgG GMRs ranged from 1·3 (99% CI 1·0-1·5) in the half VLA group to 11·5 (9·4-14·1) in the m1273 group. GMRs for wild-type cellular responses compared with controls ranged from 1·0 (95% CI 0·7-1·6) for half VLA to 4·7 (3·1-7·1) for m1273. The results were similar between those aged 30-69 years and those aged 70 years and older. Fatigue and pain were the most common solicited local and systemic adverse events, experienced more in people aged 30-69 years than those aged 70 years or older. Serious adverse events were uncommon, similar in active vaccine and control groups. In total, there were 24 serious adverse events: five in the control group (two in control group A, three in control group B, and zero in control group C), two in Ad26, five in VLA, one in VLA-half, one in BNT, two in BNT-half, two in ChAd, one in CVn, two in NVX, two in NVX-half, and one in m1273. INTERPRETATION: All study vaccines boosted antibody and neutralising responses after ChAd/ChAd initial course and all except one after BNT/BNT, with no safety concerns. Substantial differences in humoral and cellular responses, and vaccine availability will influence policy choices for booster vaccination. FUNDING: UK Vaccine Taskforce and National Institute for Health Research.


Assuntos
Vacina BNT162/administração & dosagem , COVID-19/prevenção & controle , ChAdOx1 nCoV-19/administração & dosagem , Imunização Secundária/métodos , Imunogenicidade da Vacina , Adulto , Idoso , Idoso de 80 Anos ou mais , Vacina BNT162/imunologia , COVID-19/imunologia , ChAdOx1 nCoV-19/imunologia , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Pandemias , Segurança do Paciente , SARS-CoV-2 , Reino Unido
20.
JCI Insight ; 6(23)2021 12 08.
Artigo em Inglês | MEDLINE | ID: mdl-34609964

RESUMO

Controlled human malaria infection (CHMI) provides a highly informative means to investigate host-pathogen interactions and enable in vivo proof-of-concept efficacy testing of new drugs and vaccines. However, unlike Plasmodium falciparum, well-characterized P. vivax parasites that are safe and suitable for use in modern CHMI models are limited. Here, 2 healthy malaria-naive United Kingdom adults with universal donor blood group were safely infected with a clone of P. vivax from Thailand by mosquito-bite CHMI. Parasitemia developed in both volunteers, and prior to treatment, each volunteer donated blood to produce a cryopreserved stabilate of infected RBCs. Following stringent safety screening, the parasite stabilate from one of these donors (PvW1) was thawed and used to inoculate 6 healthy malaria-naive United Kingdom adults by blood-stage CHMI, at 3 different dilutions. Parasitemia developed in all volunteers, who were then successfully drug treated. PvW1 parasite DNA was isolated and sequenced to produce a high-quality genome assembly by using a hybrid assembly method. We analyzed leading vaccine candidate antigens and multigene families, including the vivax interspersed repeat (VIR) genes, of which we identified 1145 in the PvW1 genome. Our genomic analysis will guide future assessment of candidate vaccines and drugs, as well as experimental medicine studies.


Assuntos
Genoma/genética , Malária Falciparum/genética , Animais , Voluntários Saudáveis , Humanos , Masculino , Plasmodium vivax
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...